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Abstract

The convective ‘‘heat” transfer is actually mainly carried out by the motion of hotter or colder particles from one system into another
system. Therefore, the best convective ‘‘heat” (strictly speaking, internal energy) transfer is the case where velocity vectors are always
perpendicular to the isothermal surfaces (or isotherm in 2D cases). This conclusion has been named ‘‘field synergy principle”. In this
paper, some field synergy exact solutions are presented to further develop the principle. The concrete physical meanings of the derived
analytical solutions are analyzed. The method of separating variables with addition and other extraordinary approaches are adopted in
the derivation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Field synergy principle of convection and analytical

solutions

‘‘There are three different modes of heat transfer: con-
duction, convection and radiation”. Such thinking has
been established long time ago. However, strictly speaking,
convection is not a kind of ‘‘heat” transfer according to
classical thermodynamics [1]. And according to the ASME
Heat Transfer Handbook [2], ‘‘it is not heat that is being
convected, but internal energy” in convection processes.
These concepts are useful to concisely prove and quantita-
tively indicate the ‘‘field synergy principle”.

Since the convection is mainly put in practice by the
movement of hotter or colder particles carrying higher or
lower internal energy, the directions of velocity vectors
are very important. If the movement directions of all parti-
cles were completely following the isothermal lines (2D
case) or the isothermal surfaces (3D case), it could be con-
cluded that no convection effects would occur. And the
heat transfer would be very poor, near to adiabatic if
neglecting heat conduction. Conversely, the convection
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result would be the best if the movement directions of all
particles were completely perpendicular to the isothermal
lines (2D case) or the isothermal surfaces (3D case). Such
conclusion is arrived only by physical thinking. The strict
mathematical derivation of this concept has been given
and improved by Guo and Tao, etc. [3–5] since the end
of last century. They called it ‘‘field synergy principle” of
convection. Recently, they confirmed this principle with
many numerical and experimental studies [6–11]. In addi-
tion, they applied this principle to improve some heat
transfer apparatuses and obtained excellent results.

In this paper, several algebraically explicit incompress-
ible 2D exact analytical solutions are derived. Some solu-
tions are full field synergy ones, in which velocity vectors
are always perpendicular to the isothermal lines. Some
solutions are boundary field synergy ones, in which synergy
occurs only along the boundary between fluid and its con-
tainer. They are meaningful to verify the possibility of the
existence of full field synergy and to further develop the
field synergy principle. In addition, it is well known that
the analytical exact solutions have their own theoretical
meaning. Many analytical solutions played a key role in
the early development of fluid mechanics and heat conduc-
tion [12,13]. Besides their theoretical meaning, analytical
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Nomenclature

a thermal diffusivity
c constant
f(x) function of x

g acceleration of gravity
G mass source
g(y) function of y

p pressure
q heat source
u velocity component in x direction
t velocity component in y direction
X function of x

x abscissa
Y function of y

y ordinate

b coefficient of expansion
h temperature
m kinematic viscosity
q density

Subscripts

G function for mass source
p function for pressure
q function for density
u function for velocity component u
t function for velocity component t
h function for temperature
0, 1, 2, 3 . . . different constants
1 constants
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solutions can also be applied to check the accuracy, conver-
gence and effectiveness of various numerical computation
methods and to improve their differencing schemes, grid
generation ways and so on. The analytical solutions are
therefore very useful even for the newly rapidly developing
computational fluid dynamics and heat transfer. For exam-
ple, several analytical solutions that can simulate the 3D
potential flow in turbomachine cascades were obtained by
Cai et al. [14]. And they were successfully utilized by some
investigators in their numerical calculation to check their
computational techniques and computer codes [14–17].

2. Governing equation set and analytical solution derivation

The governing equation set of steady 2D incompressible
laminar flow with constant kinematic viscosity m and ther-
mal diffusivity a (neglecting gravity and dissipation heat)
can be presented as follows:
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Considering the requirement of full field synergy, fol-
lowing equation needs to be complemented.

u=t ¼ oh
ox

�
oh
oy
: ð5Þ

Heat source q and mass flow source G are commonly
given functions. There are only four unknown variables
in the above-mentioned five equations, namely velocity
components u and t, pressure p and temperature h. Then
the equation number is more than the number of indepen-
dent variables. The problem is not properly posed and gen-
erally unable to obtain solutions. Indeed, no meaningful
solutions have been derived yet for the above-mentioned
equation set without heat or mass flow sources except for
even temperature condition. Therefore q or G needs to be
an unknown variable to satisfy the number of equations.
Actually, it physically means that it is very difficult to find
a fully field synergy condition without any artificial mea-
sures. In other words, it is possible to obtain field synergy
cases with some measures to control the field, for example,
adding appropriate heat source or mass flow source. There-
fore, q or G in the governing equation set has to be recog-
nized as a control measure and an important variable.

Governing equation set (1)–(5) are nonlinear simulta-
neous partial differential equations, not easy to be solved.
In order to obtain algebraically explicit exact analytical
solutions for evidently understanding the results, the
method of separating variables with addition promoted
by the first author [18,19] is applied. It is assumed that
the unknown solution has the form of f(x,y) = X(x) + Y(y)
rather than f(x,y) = X(x) � Y(y) in the common method of
separating variables. The main aim here is to obtain some
possible field synergy explicit analytical solutions to
develop the theory and promote computational heat trans-
fer (CHT) but not to find a specified solution for given
boundary conditions. Therefore the boundary conditions
are undetermined before derivation and deduced from the
solution afterward. It makes the derivation procedure eas-
ier. Indeed, sometimes the derivation procedure is basically
a trial and error one with the help of inspiration, experience
and fortune. The above-mentioned approaches have been
successfully applied to derive many meaningful algebrai-
cally explicit analytical solutions of heat and mass transfer
discipline [18–32].

Actually, all solutions given in this paper can be proven
easily by substituting them into the governing equation set.

Applying the method of separating variables with addi-
tion to all variables in Eqs. (1)–(5), it is assumed that:
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u ¼ X u þ Y u; ð6Þ
t ¼ X t þ Y t; ð7Þ
G ¼ X G þ Y G; ð8Þ
p ¼ X p þ Y p; ð9Þ
h ¼ X h þ Y h; ð10Þ

and

q ¼ X q þ Y q: ð11Þ
Then Eqs. (1)–(5) can be changed into:

X 0u þ Y 0v ¼ X G þ Y G; ð12Þ
ðX u þ Y uÞX 0u þ ðX t þ Y tÞY 0u ¼ �X 0p=qþ mðX 00u þ Y 00uÞ; ð13Þ
ðX u þ Y uÞX 0t þ ðX t þ Y tÞY 0t ¼ �Y 0p=qþ mðX 00t þ Y 00t Þ; ð14Þ
ðX u þ Y uÞX 0h þ ðX t þ Y tÞY 0h ¼ aðX 00h þ Y 00hÞ þ X q þ Y q; ð15Þ
and

ðX u þ Y uÞY 0h ¼ ðX t þ Y tÞX 0h: ð16Þ
In the following derivation procedure, the above-men-

tioned equations (12)–(16) are frequently applied to obtain
algebraically explicit exact solutions for field synergy con-
dition. In addition, a hybrid approach with both separating
method is also applied in this paper.

3. Analytical full field synergy solution with heat source (I) –

using the method of separating all variables with addition

To control the 2D heat transfer field, a distributed heat
source is possible to put in practice. For example, some-
times it can be done by radiation. A simple synergy solu-
tion with only heat source is first derived. Its simplified
form with very clear physical meaning is given in the next
paragraph.

The method of separating variables with addition is
adopted. The governing equation set becomes Eqs. (12)–
(16) with XG = 0 = YG.

For such case, Eq. (12) can be separated easily and the
result is:

X 0u ¼ c1 ¼ �Y 0t; ð17Þ
It is derived

X u ¼ c1xþ c2; ð18Þ
and

Y t ¼ c3 � c1y: ð19Þ
If Xt = c4, Eq. (13) can be separated as

c2
1xþ c1c2 þ X 0p=q ¼ c5

¼ �c1Y u � ðc3 þ c4ÞY 0u þ c1yY 0u þ mY 00u:

ð20Þ

The right side of Eq. (20) can be analytically solved only
when c1 = 0. Since the aim of this paper is to find analytical
exact solutions, c1 = 0 is assumed. Then from the left side
and the right side of Eq. (20), following results can be
deduced:
X p ¼ p0 þ c5qx; ð21Þ

and

Y u ¼ ½m=ðc3 þ c4Þ�2 exp½ðc3 þ c4Þðy þ c6Þ=m� � c5y=ðc3 þ c4Þ:
ð22Þ

Since X 0u ¼ Y 0t ¼ 0, from Eq. (14) it is obtained Y 0p ¼ 0.
It means Yp is a constant. According to Eqs. (9) and
(21), it can be regarded as zero:

Y p ¼ 0: ð23Þ

Substituting above results (including c1 = 0) into Eq.
(16), following separated equation is obtained:

f½m=ðc3 þ c4Þ�2 exp½ðc3 þ c4Þðy þ c6Þ=m� � c5y=ðc3 þ c4Þ þ c2gY 0h
¼ c7 ¼ ðc3 þ c4ÞX 0h: ð24Þ

The left side of Eq. (24) can be only analytically solved
when c2 = 0 = c5. Using this simplification, the following
two solutions are derived

Y h ¼ �c3c7 exp½c3ðy þ c6Þ=m�=m; ð25Þ
X h ¼ h0 þ c7x=c3: ð26Þ

Substituting the above solutions into Eq. (15), the heat
source q can be derived as

q ¼ c7½gðyÞ þ ð1þ a=mÞ=gðyÞ�; ð27Þ

where

gðyÞ ¼ m2 exp½c3ðy þ c6Þ=m�=c3
3 ð28Þ

Combining Eqs. (12)–(16) with all previous results in
this paragraph, the final solution can be expressed as fol-
lows. Because c3 + c4 always appears together in the final
result, c3 is chosen on behalf of c3 + c4.

u ¼ ðm=c3Þ2 exp½c3ðy þ c6Þ=m� ¼ c3gðyÞ; ð29Þ
t ¼ c3; ð30Þ
p ¼ p0; ð31Þ
h ¼ h0 þ c7x=c3 � c3c7 exp½�c3ðy þ c6Þ=m�=m
¼ h0 þ c7x=c3 � c7m=½c2

3gðyÞ� ð32Þ
q ¼ c7½gðyÞ þ ð1þ a=mÞ=gðyÞ�: ð33Þ

The function g(y) is given in Eq. (28).
As mentioned before, the boundary conditions are

determined after successfully deriving the solution. The
conditions can be obtained by substituting the geometries
of the boundaries into the solution. For example, if consid-
ering the boundary was a rectangle with unity width, the
boundary conditions of the solution in this paragraph
could be:

y = 0:

u ¼ ðm=c3Þ2 expðc3c6=mÞ;
h ¼ h0 þ c7x=c3 � c3c7 � expð�c3c6=mÞ=m;

and
y = 1:



Fig. 2. The stream lines and isothermal lines of Eqs. (29)–(33) with c3 < 0,
c6 = 0 and c7 > 0.
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u ¼ ðm=c3Þ2 exp½c3ð1þ c6Þ=m�;
h ¼ h0 þ c7x=c3 � c3c7 � exp½�c3ð1þ c6Þ=m�=m;

in addition,
x = 0:

u ¼ ðm=c3Þ2 exp½c3ðy þ c6Þ=m�;
h ¼ h0 � c3c7 � exp½�c3ðy þ c6Þ=m�=m;

x = 1:

u ¼ ðm=c3Þ2 exp½c3ðy þ c6Þ=m�;
h ¼ h0 þ c7=c3 � c3c7 exp½�c3ðy þ c6Þ=m�=m:

In the whole field there are t = c3 and p = p0. The q dis-
tribution can be recognized as the source, being excluded
from the boundary conditions. The boundary conditions
of other solutions given in the following paragraphs can
be determined similarly. Each solution corresponds to its
own boundary conditions.

The physical description of the solution with constants
c3 < 0, c6 = 0 and c7 > 0 is shown in Figs. 1 and 2. The first
one presents the flow between two infinite porous plates
parallel to x abscissa moving along the abscissa direction
with different speeds. Their speeds are given by Eq. (29)
with y = 0 and y = 1 to satisfy the no slip condition in vis-
cous flow. The flow field between the porous plates
described by Eqs. (29) and (30) is a synergy field. The
x-direction speed u is a 1D exponential function of y.
The y-direction speed t is a constant c3 in the whole field
including in the porous plates. The temperature distribu-
tion is a 2D function: linear along x-direction and exponen-
tial in y-direction. The isothermal lines have to be
completely perpendicular to the stream lines. The expres-
sion of the stream lines can be derived by dy/dx = t/u
and the result is x = {(m/c3)3exp[c3(y + c6)/m] � c8}/c3. Both
stream lines and isothermal lines in the considered field are
shown in Fig. 2. The heat source distribution is a 1D expo-
nential function of y.
Fig. 1. The flow condition of Eqs. (29)–(33) with c3 < 0, c6 = 0 and c7 > 0.
4. Analytical full field synergy solutions with heat source (II)

– concise solution family using the method of separating

variables with addition

The physical feature of the solution in the previous par-
agraph is a little bit complicated (with two parallel moving
porous walls as boundary). In this paragraph, a very simple
solution family with two infinite parallel steady solid walls
as boundary is given.

The simplest way to satisfy the no slip condition on the
parallel solid tunnel walls is

u ¼ c1y2 þ c2; ð34Þ
and

t ¼ 0: ð35Þ
It corresponds to the following assumptions in Eqs. (6)–

(16), and satisfies Eq. (12) with XG = 0 = YG.

X u ¼ c2; ð36Þ
Y u ¼ c1y2; ð37Þ
X t ¼ Y t ¼ 0; ð38Þ

With these assumptions, it is easy to obtain following
result from the momentum equations (13) and (14):

X p ¼ 2c1qmx; ð39Þ
Y p ¼ p0: ð40Þ

Then the pressure formula is

p ¼ p0 þ 2c1qvx: ð41Þ
Since t = 0, it is deduced from Eq. (16) Y 0h ¼ 0. In other

words Yh is a constant. Using the same equation, it is con-
cluded that Xh can be an arbitrary function of x, which
means

h ¼ arbitraryf ðxÞ: ð42Þ
Finally, the formula of heat source q (Eq. (15)) can be

easily solved as
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Fig. 4. Field synergy with a constant heat source.
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q ¼ ðc1y2 þ c2Þf 0ðxÞ � af 00ðxÞ: ð43Þ
Eqs. (34), (35) and (41)–(43) represent a family of simple

field synergy solutions. The number of the solutions in the
family is infinite since there is an arbitrary function f(x).
However, the velocity distribution – parabolic curve along
y-direction – is the same for the whole solution family, sim-
ilar to the classical 2D Poiseuille flow. The pressure distri-
bution is linear along x-direction similar to Poiseuille flow
as well. The main distinguishing feature is the heat source
distribution. It controls the distribution of temperature
and guarantees the field synergy. The heat source function
has evident relationship with the temperature distribution
(Eqs. (42) and (43)). Among the variables, flow velocity is
a function of y; thermodynamic parameters – pressure
and temperature are functions of x; heat source q is a 2D
function.

Next we analyze some representative functions of f(x)
and their features.

4.1. Solution with f(x) = Const

If f(x) = Const, there is h = Const and q = 0; no heat
transfer occurs. The solution approximates to Poiseuille
flow and is not meaningful for field synergy principle.

4.2. Solution with linear temperature distribution

If f(x) is a linear function, for example f(x) = c3x + c4,
then

h ¼ c3xþ c4; ð44Þ
and

q ¼ c3ðc1y2 þ c2Þ: ð45Þ
Besides the velocity and pressure distributions, it means

the temperature is a 1D linear function of x. The isother-
mal lines are simple vertical lines. Because there is only
x-direction velocity u, the field synergy condition is evi-
dently fulfilled. The heat source distribution is similar to
the velocity distribution. They are all 1D function of y.

The feature of this solution with c1 < 0, c2 = �c1 and
c3 = 1 is given in Fig. 3. It is a very simple and clear field
synergy flow.

In addition, another very simple solution similar to
Fig. 3 with even isothermal line but with constant heat
source distribution can be derived as a simplified case of
the solution given by Eqs. (34), (35) and (41)–(43). When
c1 = 0, f(x) = c2x, the simplified solution is

u ¼ c2 ¼ Const t ¼ 0

p ¼ p0 ¼ Const h ¼ c3xþ c4

q ¼ c2c3 ¼ Const

9>=
>; ð46Þ

The feature of this solution is given in Fig. 4. If consid-
ering a nonviscous flow, both channel walls can be
regarded steady. But for viscous flow, the walls have to
move towards right with the same velocity of the fluid –
u to satisfy the no slip condition. The distinguishing feature
of this solution is that the heat source is constant. There-
fore it is very easy to put in practice.
4.3. Full field synergy solution without sources

For above-mentioned Poiseuille flow, can we find the
field synergy solutions without mass and heat sources? If
assuming q = 0, Eq. (43) can be expressed as

ðc1y2 þ c2Þ=a ¼ f 00ðxÞ=f 0ðxÞ: ð47Þ

Eq. (47) can be solved only when c1 = 0. Then the equa-
tion becomes an ordinary differential equation

f 00ðxÞ ¼ c2f 0ðxÞ=a: ð48Þ

The solution is

f ðxÞ ¼ h ¼ c5a � expðc2x=aÞ=c2: ð49Þ

However, according to Eqs. (34) and (41), c1 = 0 means
velocity is a constant u = c2 and pressure is a constant as
well. The viscosity m does not appear in the equations.
Therefore the solution is for the ideal nonviscous flow
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Fig. 5. An ideal case of field synergy.
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without boundary layer. A simplified illustration of this
solution is given in Fig. 5. The velocity vector is constant
and horizontal. The isothermal lines with the same temper-
ature difference are vertical and located denser and denser
from left to right. A similar solution and figure were given
some years ago [4] without mathematic derivation and the
distance between the isothermal lines is even in that figure.
It seems such figure only mentioned the perpendicular rela-
tionship between velocity and isothermal lines but
neglected the arrangement of isothermal lines. By the
way, a linear function h(x) cannot satisfy the governing
equation (4) with u = Const, q = 0 and t = 0.

In summary, we can find field synergy in the steady wall
Poiseuille flow without mass and heat sources for only ideal
nonviscous case.

By the way, if both walls of the flow channel are consid-
ered moving towards right with the same velocity of the
fluid – u – and satisfying the no slip condition, it can be rec-
ognized as a viscous flow.
4.4. Other possible solutions

Using Eqs. (34), (35) and (41)–(43) and choosing differ-
ent h = f(x), infinite field synergy solutions can be derived
easily. Their velocity and pressure distributions are similar
to that of Poiseuille flow. Only the temperature distribu-
tions h(x) and corresponding heat source distributions
are different. By the way, we have not yet found any other
solutions with clear physical characteristics as Figs. 3–5.
However, perhaps new solutions could be found later.
The solutions given in this paragraph are based on Poiseu-
ille flow, which is a very popular case.
5. Analytical full field synergy solution with heat source (III)

– using the hybrid method of separating variables

The method of separating variables with addition has
been indeed successfully applied to derive many analytical
solutions. However, for simultaneous equations with two
or more variables, it is not necessary to apply the same sep-
arating approach for all variables. Hybrid methods can be
used. For example, some variables could be treated with
the method of separating variables with addition, and the
others could be treated with the common method of sepa-
rating variables with multiplication. In this paragraph,
instead of Eq. (10), it is assumed that

hðx; yÞ ¼ X h � Y h: ð50Þ

But other variables are assumed as the same as before Eqs.
(6)–(9).

In this case, the Eqs. (12)–(14) are still effective. But the
Eq. (16) has to be changed into

ðX u þ Y uÞX hY 0h ¼ ðX v þ Y vÞX 0hY h: ð51Þ

Then the velocity and pressure distributions are the
same with Eqs. (29)–(31). But the temperature distribution
should be derived from Eq. (51) with known velocity distri-
bution equations (29) and (30). The expression is

ðm=c3Þ2 exp½c3ðy þ c6Þ=m�X hY 0h ¼ c3X 0hY h: ð52Þ

After separating variables, following two ordinary dif-
ferential equations are obtained:

ðm2=c3
3Þ exp½c3ðy þ c6Þ=m�Y 0h=Y h ¼ c7 ¼ X 0h=X h: ð53Þ

The final result of Eqs. (50)–(53) is

h ¼ h0 þ c8 expðc7xÞ � expf�c7c2
3 exp½�c3ðy þ c6Þ=m�=mg:

ð54Þ

The heat source q can be derived easily by substituting the
expressions of u, v and h (Eqs. (25), (26) and (54)) into Eq.
(4).

The physical feature of this solution is very similar to
these of Figs. 1 and 2 in Section 3. But the heat source q

here is a 2D function. The graphical expressions are not
given here to shorten the space of the paper.

Besides obtaining an exact solution, another more
meaningful result of this paragraph is the application of
the new method of separating variables for partial differen-
tial equations. It should be developed further.

6. Analytical full field synergy solutions with mass source –

using the method of separating variables with addition

All the solutions given in the above-mentioned three
paragraphs only apply the heat source to achieve field syn-
ergy. In this paragraph, solutions utilizing only mass
sources to achieve field synergy are derived. However, uti-
lizing pure mass sources is commonly more complicated in
practice compared with heat sources. For example, the
temperature of each particle of the mass source has to be
the same with the temperature at the injecting positions.
Otherwise it is difficult to accurately control the tempera-
ture field. In addition, the particle motion would com-
monly disturb the flow field. Nevertheless, deriving some
analytical solution is helpful for developing field synergy



Fig. 6. The flow condition of Eqs. (66)–(69) with c5 = 0.

Fig. 7. The stream lines of Eqs. (66)–(69) with c5 = 0.
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principle and understanding how to promote the field
synergy.

In following derivation, q = 0 and G 6¼ 0 is adopted in
the governing equation set.

6.1. The first solution

Omitting the trial and error procedure, the brief deriva-
tion is summarized as follows. Assuming

Y u ¼ Const ¼ c1; ð55Þ
X t ¼ Const ¼ c2: ð56Þ

Then the governing equations (13)–(16) become

ðX u þ c1ÞX 0u ¼ �
1

q
X 0p þ mX 00u; ð57Þ

ðY t þ c2ÞY 0t ¼ �
1

q
Y 0p þ mY 00t ; ð58Þ

ðX u þ c1ÞX 0h þ ðY t þ c2ÞY 0h ¼ aðX 00h þ Y 00hÞ ð59Þ

and

ðX u þ c1Þ=ðY t þ c2Þ ¼ X 0h=Y 0h: ð60Þ

After separating variables, they appear as:

X 0p ¼ q½�ðX u þ c1ÞX 0u þ mX 00u�; ð61Þ
Y 0p ¼ q½�ðY t þ c2ÞY 0t þ mY 00u�; ð62Þ
aX 00h � ðX u þ c1ÞX 0h ¼ �c3 ¼ ðY t þ c2ÞY 0h � aY 00h ð63Þ

and

ðX u þ c1Þ=X 0h ¼ c4 ¼ ðY t þ c2Þ=Y 0h: ð64Þ

From Eqs. (63) and (64) following results can be deduced:

h ¼ X h þ Y h

¼ h0 þ
ffiffiffiffiffiffiffiffiffiffiffi
c3=c4

p
ðxþ c6Þ � a lnfcos½ð ffiffiffiffiffiffiffiffic3c4

p
=aÞðy � c5Þ�g=c4:

ð65Þ

Then the velocities can be derived from Eq. (60) as:

u ¼ ffiffiffiffiffiffiffiffi
c3c4

p
; ð66Þ

t ¼ ffiffiffiffiffiffiffiffi
c3c4

p
tan½ ffiffiffiffiffiffiffiffic3c4

p ðy � c5Þ=a�; ð67Þ

And the pressure expression is obtained as following
according to Eqs. (61) and (62)

p ¼ p0 þ c3c4q½ð2m=a� 1Þ� tan2½ ffiffiffiffiffiffiffiffic3c4

p ðy � c5Þ=a�=2 ð68Þ

In addition, the mass source G is derived from Eq. (1) as:

G ¼ c3c4 sec2½ ffiffiffiffiffiffiffiffic3c4

p ðy � c5Þ=a�=a: ð69Þ

And the stream line equation is x ¼ x0 þ a lnfsin½ ffiffiffiffiffiffiffiffic3c4
p ðy�

c5Þ=a�g= ffiffiffiffiffiffiffiffi
c3c4
p

.
It can be found from the above-mentioned results that in

this solution only temperature h is a 2D function. Other
parameters are functions of y(t, p and G) or even a con-
stant (u).

The physical description of the solution with c5 = 0 is
shown in Figs. 6 and 7. The former presents the flow
between two infinite plates parallel to x abscissa moving
along the abscissa direction with the same speed. The lower
plate is a solid one but the upper is a porous one. The
x-direction speed u in the channel is a constant and equal
to the moving speed of the plates. The y-direction speed t
in the channel increases along y-direction from zero at
lower plate. Finally the working fluid ejects out through
the upper porous plate. The stream lines are shown in
Fig. 7.
6.2. The second solution

If the constant c3 in Eq. (63) is equal to zero, the solu-
tion of previous sub-paragraph is non-sense. The correct
solution has to be re-derived from Eq. (63) with the same
procedure as that in the previous paragraph. The final
expressions are

h ¼ h0 � a ln½ðx� c6Þðy � c5Þ�=c4; ð70Þ
u ¼ �a=ðx� c6Þ; ð71Þ
t ¼ �a=ðy � c5Þ; ð72Þ
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p ¼ p0 þ qað2m� aÞ=2½1=ðx� c6Þ2 þ 1=ðy � c5Þ2� ð73Þ

and

G ¼ a½1=ðx� c6Þ2 þ 1=ðy � c5Þ2� ð74Þ

The physical feature of Eqs. (70)–(74) is not clear and evi-
dent enough for viscous flow. However, it can still be a
benchmark solution for the CHT of field synergy.

By the way, a special feature of this solution is that all
the isobaric lines, the iso-mass source lines and the iso-
velocity (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ t2
p

) lines are represented by the linear func-
tion [1/(x � c6)2 + 1/(y � c5)2].

However, if considering nonviscous flow and
c6 = 0 = c7, Eqs. (70)–(74) represent a linear parallel flow
in a 45� inclined straight isometric solid path.
7. Analytical boundary synergy solution

It is probably easier to satisfy the boundary synergy
(synergy only occurs along the boundary between fluid
and its container) than full field synergy. However, the
boundary is commonly important for the convection
equipment. Therefore, an analytical solution is given for
such case as an example.

Actually, a boundary synergy solution had been given
some years ago by the first author [26]. It is a 2D laminar
natural convection in a semi-infinite space with boundary
suction along an infinite long vertical cold porous plate.
Nevertheless, it was only mentioned a successful derivation
of natural convection at that time, and has not yet been
announced the solution is a boundary synergy one.

From [26], the solution is [where x direction is opposite
to the gravity and the governing equation set is a little bit
different from Eqs. (1)–(5)]:

G ¼ 0; ð75Þ
u ¼ �c3bga2 expð�c1y=aÞ=½c3

1ð1� m=aÞ�
� c4m expð�c1y=mÞ=c1 � c2bgy=c1 þ c5 ð76Þ

m ¼ �c1; ð77Þ
Fig. 8. A boundary field synergy case (Fig. 1 in [26]).
h ¼ h1 þ c2 � ac3 expð�c1y=aÞ=c1; ð78Þ
q ¼ 0: ð79Þ

It is assumed c1 > 0, c2 = 0 and c5 ¼ c3bga2=
½c3

1ð1� v=aÞ� þ c4v=c1. For y = 0 there are u = 0, t = �c1

and h = h1 � c3a/c1. The field synergy is satisfied on the
boundary. The physical description can be seen in Fig. 8.

With different values of constants in Eqs. (76)–(78),
there are some other boundary field synergy cases given
in [26]; please refer to it.

8. Summary

(1) A thermodynamically strict discussion is concisely
given about the convection, it is proven that the con-
vection is not a rigorous ‘‘heat” transfer but mainly
internal energy transfer by the movement of particles.

(2) Based on the previous discussion of convection, the
concept of field synergy – the best convection ‘‘heat”
transfer is the case where the velocity vectors are
always perpendicular to the isothermal surfaces – is
easy to understand and its governing equation is easy
to set up.

(3) For further theoretically developing the field synergy
principle and researching the artificial measures to
accomplish field synergy, different kinds of algebrai-
cally explicit analytical exact solutions are derived
and given, including solutions with heat source, with
mass source, full field synergy solutions and boundary
field synergy solutions. The derivation approaches
include different methods of separating variables.
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